direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C42⋊2C2, C42⋊32D6, C4⋊C4⋊32D6, (S3×C42)⋊19C2, (C4×C12)⋊31C22, C22⋊C4.76D6, C42⋊3S3⋊13C2, D6.42(C4○D4), (C2×C12).94C23, (C2×C6).247C24, D6⋊C4.44C22, C4⋊Dic3⋊43C22, Dic3⋊C4⋊31C22, (C4×Dic3)⋊80C22, C23.8D6⋊44C2, (C22×C6).61C23, C23.63(C22×S3), (S3×C23).67C22, C22.268(S3×C23), (C22×S3).258C23, (C2×Dic3).128C23, C6.D4.63C22, (S3×C4⋊C4)⋊40C2, C3⋊4(C2×C42⋊2C2), C4⋊C4⋊S3⋊40C2, C2.94(S3×C4○D4), (C3×C4⋊C4)⋊31C22, C6.205(C2×C4○D4), (S3×C22⋊C4).3C2, (C3×C42⋊2C2)⋊2C2, (S3×C2×C4).299C22, (C2×C4).84(C22×S3), (C3×C22⋊C4).72C22, SmallGroup(192,1262)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C42⋊2C2
G = < a,b,c,d,e | a3=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=cd2, ede=c2d-1 >
Subgroups: 624 in 246 conjugacy classes, 101 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×S3, C22×C6, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊2C2, C42⋊2C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C23, C2×C42⋊2C2, S3×C42, C42⋊3S3, C23.8D6, S3×C22⋊C4, S3×C4⋊C4, C4⋊C4⋊S3, C3×C42⋊2C2, S3×C42⋊2C2
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C42⋊2C2, C2×C4○D4, S3×C23, C2×C42⋊2C2, S3×C4○D4, S3×C42⋊2C2
(1 24 27)(2 21 28)(3 22 25)(4 23 26)(5 43 32)(6 44 29)(7 41 30)(8 42 31)(9 47 37)(10 48 38)(11 45 39)(12 46 40)(13 33 18)(14 34 19)(15 35 20)(16 36 17)
(1 11)(2 12)(3 9)(4 10)(5 15)(6 16)(7 13)(8 14)(17 44)(18 41)(19 42)(20 43)(21 40)(22 37)(23 38)(24 39)(25 47)(26 48)(27 45)(28 46)(29 36)(30 33)(31 34)(32 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 35 9 30)(2 36 10 31)(3 33 11 32)(4 34 12 29)(5 22 18 45)(6 23 19 46)(7 24 20 47)(8 21 17 48)(13 39 43 25)(14 40 44 26)(15 37 41 27)(16 38 42 28)
(2 10)(4 12)(5 20)(6 8)(7 18)(13 41)(14 16)(15 43)(17 19)(21 48)(23 46)(26 40)(28 38)(29 31)(30 33)(32 35)(34 36)(42 44)
G:=sub<Sym(48)| (1,24,27)(2,21,28)(3,22,25)(4,23,26)(5,43,32)(6,44,29)(7,41,30)(8,42,31)(9,47,37)(10,48,38)(11,45,39)(12,46,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,44)(18,41)(19,42)(20,43)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,9,30)(2,36,10,31)(3,33,11,32)(4,34,12,29)(5,22,18,45)(6,23,19,46)(7,24,20,47)(8,21,17,48)(13,39,43,25)(14,40,44,26)(15,37,41,27)(16,38,42,28), (2,10)(4,12)(5,20)(6,8)(7,18)(13,41)(14,16)(15,43)(17,19)(21,48)(23,46)(26,40)(28,38)(29,31)(30,33)(32,35)(34,36)(42,44)>;
G:=Group( (1,24,27)(2,21,28)(3,22,25)(4,23,26)(5,43,32)(6,44,29)(7,41,30)(8,42,31)(9,47,37)(10,48,38)(11,45,39)(12,46,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,44)(18,41)(19,42)(20,43)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,9,30)(2,36,10,31)(3,33,11,32)(4,34,12,29)(5,22,18,45)(6,23,19,46)(7,24,20,47)(8,21,17,48)(13,39,43,25)(14,40,44,26)(15,37,41,27)(16,38,42,28), (2,10)(4,12)(5,20)(6,8)(7,18)(13,41)(14,16)(15,43)(17,19)(21,48)(23,46)(26,40)(28,38)(29,31)(30,33)(32,35)(34,36)(42,44) );
G=PermutationGroup([[(1,24,27),(2,21,28),(3,22,25),(4,23,26),(5,43,32),(6,44,29),(7,41,30),(8,42,31),(9,47,37),(10,48,38),(11,45,39),(12,46,40),(13,33,18),(14,34,19),(15,35,20),(16,36,17)], [(1,11),(2,12),(3,9),(4,10),(5,15),(6,16),(7,13),(8,14),(17,44),(18,41),(19,42),(20,43),(21,40),(22,37),(23,38),(24,39),(25,47),(26,48),(27,45),(28,46),(29,36),(30,33),(31,34),(32,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,35,9,30),(2,36,10,31),(3,33,11,32),(4,34,12,29),(5,22,18,45),(6,23,19,46),(7,24,20,47),(8,21,17,48),(13,39,43,25),(14,40,44,26),(15,37,41,27),(16,38,42,28)], [(2,10),(4,12),(5,20),(6,8),(7,18),(13,41),(14,16),(15,43),(17,19),(21,48),(23,46),(26,40),(28,38),(29,31),(30,33),(32,35),(34,36),(42,44)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | ··· | 4F | 4G | 4H | 4I | 4J | ··· | 4O | 4P | 4Q | 4R | 6A | 6B | 6C | 6D | 12A | ··· | 12F | 12G | 12H | 12I |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 12 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 8 | 4 | ··· | 4 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | C4○D4 | S3×C4○D4 |
kernel | S3×C42⋊2C2 | S3×C42 | C42⋊3S3 | C23.8D6 | S3×C22⋊C4 | S3×C4⋊C4 | C4⋊C4⋊S3 | C3×C42⋊2C2 | C42⋊2C2 | C42 | C22⋊C4 | C4⋊C4 | D6 | C2 |
# reps | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 12 | 6 |
Matrix representation of S3×C42⋊2C2 ►in GL6(𝔽13)
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 3 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 8 |
0 | 0 | 0 | 0 | 10 | 8 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 12 |
G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,3,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,10,0,0,0,0,8,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,2,0,0,0,0,0,12] >;
S3×C42⋊2C2 in GAP, Magma, Sage, TeX
S_3\times C_4^2\rtimes_2C_2
% in TeX
G:=Group("S3xC4^2:2C2");
// GroupNames label
G:=SmallGroup(192,1262);
// by ID
G=gap.SmallGroup(192,1262);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,346,297,136,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c*d^2,e*d*e=c^2*d^-1>;
// generators/relations