Copied to
clipboard

G = S3×C422C2order 192 = 26·3

Direct product of S3 and C422C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C422C2, C4232D6, C4⋊C432D6, (S3×C42)⋊19C2, (C4×C12)⋊31C22, C22⋊C4.76D6, C423S313C2, D6.42(C4○D4), (C2×C12).94C23, (C2×C6).247C24, D6⋊C4.44C22, C4⋊Dic343C22, Dic3⋊C431C22, (C4×Dic3)⋊80C22, C23.8D644C2, (C22×C6).61C23, C23.63(C22×S3), (S3×C23).67C22, C22.268(S3×C23), (C22×S3).258C23, (C2×Dic3).128C23, C6.D4.63C22, (S3×C4⋊C4)⋊40C2, C34(C2×C422C2), C4⋊C4⋊S340C2, C2.94(S3×C4○D4), (C3×C4⋊C4)⋊31C22, C6.205(C2×C4○D4), (S3×C22⋊C4).3C2, (C3×C422C2)⋊2C2, (S3×C2×C4).299C22, (C2×C4).84(C22×S3), (C3×C22⋊C4).72C22, SmallGroup(192,1262)

Series: Derived Chief Lower central Upper central

C1C2×C6 — S3×C422C2
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — S3×C422C2
C3C2×C6 — S3×C422C2
C1C22C422C2

Generators and relations for S3×C422C2
 G = < a,b,c,d,e | a3=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=cd2, ede=c2d-1 >

Subgroups: 624 in 246 conjugacy classes, 101 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×S3, C22×C6, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C422C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C23, C2×C422C2, S3×C42, C423S3, C23.8D6, S3×C22⋊C4, S3×C4⋊C4, C4⋊C4⋊S3, C3×C422C2, S3×C422C2
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C422C2, C2×C4○D4, S3×C23, C2×C422C2, S3×C4○D4, S3×C422C2

Smallest permutation representation of S3×C422C2
On 48 points
Generators in S48
(1 24 27)(2 21 28)(3 22 25)(4 23 26)(5 43 32)(6 44 29)(7 41 30)(8 42 31)(9 47 37)(10 48 38)(11 45 39)(12 46 40)(13 33 18)(14 34 19)(15 35 20)(16 36 17)
(1 11)(2 12)(3 9)(4 10)(5 15)(6 16)(7 13)(8 14)(17 44)(18 41)(19 42)(20 43)(21 40)(22 37)(23 38)(24 39)(25 47)(26 48)(27 45)(28 46)(29 36)(30 33)(31 34)(32 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 35 9 30)(2 36 10 31)(3 33 11 32)(4 34 12 29)(5 22 18 45)(6 23 19 46)(7 24 20 47)(8 21 17 48)(13 39 43 25)(14 40 44 26)(15 37 41 27)(16 38 42 28)
(2 10)(4 12)(5 20)(6 8)(7 18)(13 41)(14 16)(15 43)(17 19)(21 48)(23 46)(26 40)(28 38)(29 31)(30 33)(32 35)(34 36)(42 44)

G:=sub<Sym(48)| (1,24,27)(2,21,28)(3,22,25)(4,23,26)(5,43,32)(6,44,29)(7,41,30)(8,42,31)(9,47,37)(10,48,38)(11,45,39)(12,46,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,44)(18,41)(19,42)(20,43)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,9,30)(2,36,10,31)(3,33,11,32)(4,34,12,29)(5,22,18,45)(6,23,19,46)(7,24,20,47)(8,21,17,48)(13,39,43,25)(14,40,44,26)(15,37,41,27)(16,38,42,28), (2,10)(4,12)(5,20)(6,8)(7,18)(13,41)(14,16)(15,43)(17,19)(21,48)(23,46)(26,40)(28,38)(29,31)(30,33)(32,35)(34,36)(42,44)>;

G:=Group( (1,24,27)(2,21,28)(3,22,25)(4,23,26)(5,43,32)(6,44,29)(7,41,30)(8,42,31)(9,47,37)(10,48,38)(11,45,39)(12,46,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,44)(18,41)(19,42)(20,43)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,9,30)(2,36,10,31)(3,33,11,32)(4,34,12,29)(5,22,18,45)(6,23,19,46)(7,24,20,47)(8,21,17,48)(13,39,43,25)(14,40,44,26)(15,37,41,27)(16,38,42,28), (2,10)(4,12)(5,20)(6,8)(7,18)(13,41)(14,16)(15,43)(17,19)(21,48)(23,46)(26,40)(28,38)(29,31)(30,33)(32,35)(34,36)(42,44) );

G=PermutationGroup([[(1,24,27),(2,21,28),(3,22,25),(4,23,26),(5,43,32),(6,44,29),(7,41,30),(8,42,31),(9,47,37),(10,48,38),(11,45,39),(12,46,40),(13,33,18),(14,34,19),(15,35,20),(16,36,17)], [(1,11),(2,12),(3,9),(4,10),(5,15),(6,16),(7,13),(8,14),(17,44),(18,41),(19,42),(20,43),(21,40),(22,37),(23,38),(24,39),(25,47),(26,48),(27,45),(28,46),(29,36),(30,33),(31,34),(32,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,35,9,30),(2,36,10,31),(3,33,11,32),(4,34,12,29),(5,22,18,45),(6,23,19,46),(7,24,20,47),(8,21,17,48),(13,39,43,25),(14,40,44,26),(15,37,41,27),(16,38,42,28)], [(2,10),(4,12),(5,20),(6,8),(7,18),(13,41),(14,16),(15,43),(17,19),(21,48),(23,46),(26,40),(28,38),(29,31),(30,33),(32,35),(34,36),(42,44)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A···4F4G4H4I4J···4O4P4Q4R6A6B6C6D12A···12F12G12H12I
order122222222234···44444···4444666612···12121212
size1111333341222···24446···612121222284···4888

42 irreducible representations

dim11111111222224
type++++++++++++
imageC1C2C2C2C2C2C2C2S3D6D6D6C4○D4S3×C4○D4
kernelS3×C422C2S3×C42C423S3C23.8D6S3×C22⋊C4S3×C4⋊C4C4⋊C4⋊S3C3×C422C2C422C2C42C22⋊C4C4⋊C4D6C2
# reps111333311133126

Matrix representation of S3×C422C2 in GL6(𝔽13)

0120000
1120000
001000
000100
000010
000001
,
010000
100000
0012000
0001200
0000120
0000012
,
100000
010000
008300
000500
000080
000008
,
1200000
0120000
005000
000500
000058
0000108
,
100000
010000
001000
00121200
000010
0000212

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,3,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,10,0,0,0,0,8,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,2,0,0,0,0,0,12] >;

S3×C422C2 in GAP, Magma, Sage, TeX

S_3\times C_4^2\rtimes_2C_2
% in TeX

G:=Group("S3xC4^2:2C2");
// GroupNames label

G:=SmallGroup(192,1262);
// by ID

G=gap.SmallGroup(192,1262);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,346,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c*d^2,e*d*e=c^2*d^-1>;
// generators/relations

׿
×
𝔽